Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gang Yu, Yi-Zhi Li, Li-Ya Cao, Xiao-Mo Zhang, Kai Wang and Hong-Wen Hu*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.052$
$w R$ factor $=0.147$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Ethyl-2-oxo-5-phenyl-1,6-dihydro-2Hoxazolo[$\left.4^{\prime}, 5^{\prime}: 5,6\right]$ pyrido[3,4-b]indole methanol hemisolvate

The title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}$, has been synthesized from the ene-lactam with $\mathrm{P}(\mathrm{OEt})_{3}$ under an N_{2} atmosphere. The title indole molecules are linked via N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains.

Comment

Azaelliptitoxin (azatoxin) as a potent inhibitor of DNA topoisomerase II and tubulin polymerization have attracted much attention (Tepe et al., 1996). However, the crystal structures of azaelliptitoxin and its analogues have rarely been reported (Abu-Safieh et al., 2002). Conveniently, we have synthesized the title compound, (2), similar to azaelliptitoxin in one pot from the ene-lactam (1) with $\mathrm{P}(\mathrm{OEt})_{3}$ under an N_{2} atmosphere (Yu et al., 2004).

The asymmetric unit of (2) comprises one title indole molecule and one-half of a methanol molecule of crystal-

Figure 1
The molecular structure of (2) with 30% probability displacement ellipsoids. The methanol atom O4 shows positional disorder and one of two possible positions has been omitted for clarity.

Received 20 May 2004
Accepted 22 June 2004
Online 30 June 2004
lization (Fig. 1). The title indole molecules are linked by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), forming one-dimensional chains (Fig. 2). Neighbouring molecular chains are parallel to one another, forming layers (Fig. 3); neighboring layers are cross-linked to each other through solvent methanol molecules, leading to the three-dimensional supermolecular framework.

Experimental

The ene-lactam (1) ($1.06 \mathrm{~g}, 2.5 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(0.21 \mathrm{~g}$, $2.5 \mathrm{mmol})$ in $\mathrm{P}(\mathrm{OEt})_{3}(25 \mathrm{ml})$ were heated at 393 K under nitrogen. After 3 h , all ene-lactam (1) had disappeared (monitored by thinlayer chromatography). The solvent was removed in vacuo, then the title compound was collected by chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc-petroleum ether (1:10:10). Crystals of (2) suitable for X-ray analysis were obtained by recrystallization from MeOH .

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 0.5 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=345.37$
Monoclinic, $C 2 / c$
$a=17.728$ (4) A
$b=8.5045$ (19) \AA
$c=22.575$ (5) \AA
$\beta=105.925(4)^{\circ}$
$V=3273.0(12) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
7860 measured reflections
$D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 883
reflections
$\theta=2.4-22.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

2884 independent reflections
2232 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 20$
$k=-10 \rightarrow 9$
$l=-26 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.081 P)^{2}\right. \\
& +0.3023 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.011 \text { 。 } \\
& \Delta \rho_{\max }=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \text { e } \AA^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.147$
$S=1.06$
2884 reflections
241 parameters
H-atom parameters constrained
Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 6-\mathrm{H} 6 \cdots \mathrm{O1}^{\mathrm{i}}$	0.86	2.16	$2.938(2)$	150

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$.
Methanol atom C19 lies on a twofold axis parallel to b, and atom O4 shows positional disorder over two sites. All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$

Figure 2
The one-dimensional chain of molecules linked by hydrogen bonds (dashed lines). Symmetry code of atom $\mathrm{O} 1: \frac{1}{2}+x, \frac{1}{2}+y, z$.

Figure 3
The crystal structure of (2).
and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were refined as riding, with $U_{\text {iso }}(\mathrm{H})$ set at 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Version 1.2.1; Bruno et al., 2002); software used to prepare material for publication: SHELXTL.

We are grateful to the National Natural Science Foundation of China for financial support (No. 0205B026).

References

Abu-Safieh, K. A., El-Abadelah, M. M., Sabri, S. S., Voelter, W. Mossmer, A. M. \& Stroeble, M. (2002). Z. Naturforsch. Teil B, 57, 1327-1332.

Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Tepe, J. J., Madalengoitia, J. S., Slunt, K. M., Werbovetz, K. W., Spoors, P. G. \& Macdonald, T. L. (1996). J. Med. Chem. 39, 2188-2196.
Yu, G., Wang, S.-Z., Wang, K., Hu, Y.-F. \& Hu, H.-W. (2004). Synthesis, 7, 1021-1028.

